Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint.

نویسندگان

  • Conly L Rieder
  • Helder Maiato
چکیده

Cells that cannot satisfy the spindle assembly checkpoint (SAC) are delayed in mitosis (D-mitosis), a fact that has useful clinical ramifications. However, this delay is seldom permanent, and in the presence of an active SAC most cells ultimately escape mitosis and enter the next G1 as tetraploid cells. This review defines and discusses the various factors that determine how long a cell remains in mitosis when it cannot satisfy the SAC and also discusses the cell's subsequent fate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast

The spindle assembly checkpoint is the mechanism or set of mechanisms that prevents cells with defects in chromosome alignment or spindle assembly from passing through mitosis. We have investigated the effects of mini-chromosomes on this checkpoint in budding yeast by performing pedigree analysis. This method allowed us to observe the frequency and duration of cell cycle delays in individual ce...

متن کامل

Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint

The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule attachment or the force generated by dynamic microtubules that signals stable biorientation of c...

متن کامل

The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes

The accuracy of chromosome segregation is enhanced by the spindle assembly checkpoint (SAC). The SAC is thought to monitor two distinct events: attachment of kinetochores to microtubules and the stretch of the centromere between the sister kinetochores that arises only when the chromosome becomes properly bioriented. We examined human cells undergoing mitosis with unreplicated genomes (MUG). Ki...

متن کامل

Regulated inactivation of the spindle assembly checkpoint without functional mitotic spindles.

The spindle assembly checkpoint (SAC) arrests mitosis until bipolar attachment of spindle microtubules to all chromosomes is accomplished. However, when spindle formation is prevented and the SAC cannot be satisfied, mammalian cells can eventually overcome the mitotic arrest while the checkpoint is still activated. We find that Aspergillus nidulans cells, which are unable to satisfy the SAC, in...

متن کامل

Unrestrained Spindle Elongation during Recovery from Spindle Checkpoint Activation in cdc15-2 Cells Results in Mis-Segregation of Chromosomes

During normal metaphase in Saccharomyces cerevisiae, chromosomes are captured at the kinetochores by microtubules emanating from the spindle pole bodies at opposite poles of the dividing cell. The balance of forces between the cohesins holding the replicated chromosomes together and the pulling force from the microtubules at the kinetochores result in the biorientation of the sister chromatids ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2004